Characterization of naphthaleneacetic Acid binding to receptor sites on cellular membranes of maize coleoptile tissue.

نویسندگان

  • P M Ray
  • U Dohrmann
چکیده

Characteristics of and optimum conditions for saturable ("specific") binding of [(14)C]naphthaleneacetic acid to sites located on membranous particles from maize (Zea mays L.) coleoptiles are described. Most, if not all, of the specific binding appears to be due to a single kinetic class of binding sites having a K(D) of 5 to 7 x 10(-7)m for naphthalene-1-acetic acid (NAA). Binding of NAA is insensitive to high monovalent salt concentrations, indicating that binding is not primarily ionic. However, specific binding is inhibited by Mg(2+) or Ca(2+) above 5 mm. Specific binding is improved by organic acids, especially citrate. Binding is heat-labile and is sensitive to agents that act either on proteins or on lipids. Specific binding is reversibly inactivated by reducing agents such as dithioerythritol; a reducible group, possibly a disulfide group, may be located at the binding site and required for its function. The affinity of the specific binding sites for auxins is modified by an unidentified dialyzable, heat-stable, apparently amphoteric, organic factor ("supernatant factor") found in maize tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro auxin binding to cellular membranes of cucumber fruits.

Specific binding of 1-naphthaleneacetic acid (NAA) to crude membrane preparations from cucumber (Cucumis sativus L.) was demonstrated. This in vitro binding had a pH optimum of 3.75 and an equilibrium dissociation constant of 10 to 20 micromolar with 1250 picomoles binding sites per gram fresh weight. The NAA-binding sites were pronase sensitive. The supernatant from the fruit partially inhibit...

متن کامل

Phytotropins: III. NAPHTHYLPHTHALAMIC ACID BINDING SITES ON MAIZE COLEOPTILE MEMBRANES AS POSSIBLE RECEPTOR SITES FOR PHYTOTROPIN ACTION.

Certain members of the phytotropin class of auxin transport inhibitors are shown to bind with high affinity to the known naphthylphthalamic acid binding sites in maize (Zea mays) coleoptiles. The binding site is, thus, a phytotropin binding site. In general, the degree of binding correlates with the phytotropin structure activity rules and with physiological activities of model compounds. It is...

متن کامل

Solubilization of the receptor for N-1-naphthylphthalamic Acid.

A receptor protein for the auxin transport inhibitor, N-1-naphthylphthalamic acid (NPA), has been solubilized from corn coleoptile membranes using Triton X-100. [(3)H]NPA binding activity of the receptor was compared in soluble and membrane-bound states. Both activities are abolished by treatment with trypsin. Differences between the two are observed in pH optima and rates of heat inactivation....

متن کامل

Effects of inorganic solutes on the binding of auxin.

The binding of alpha-naphthaleneacetic acid ((14)C-NAA) to pelletable particulates from corn (Zea mays) coleoptiles was found to be influenced by inorganic solutes. La(3+), Ca(2+), and Mg(2+) increased the binding whereas monovalent cations did not. The concentrations of CaCl(2) which increased auxin binding were similar to those which inhibited coleoptile elongation in the presence of auxin. T...

متن کامل

Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts.

Tobacco mesophyll protoplasts were previously shown to respond to naphthaleneacetic acid by modifying their transmembrane potential difference. In the present work, evacuolated protoplasts were used to show that this response resides only at the plasmalemma. This electrical response was investigated by using polyclonal antibodies directed against plasma membrane antigens presumably involved in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 59 3  شماره 

صفحات  -

تاریخ انتشار 1977